High Performance GPU-Based Preprocessing for Time-of-Flight Imaging in Medical Applications

نویسندگان

  • Jakob Wasza
  • Sebastian Bauer
  • Joachim Hornegger
چکیده

Time-of-Flight (ToF) imaging is a promising technology for real-time metric surface acquisition and has recently been proposed for a variety of medical applications. However, due to limitations of the sensor, range data from ToF cameras are subject to noise and contain invalid outliers. In this paper, we discuss a real-time capable framework for ToF preprocessing in a medical environment. The contribution of this work is threefold. First, we address the restoration of invalid measurements that typically occur with specular reflections on wet organ surfaces. Second, we compare the conventional bilateral filter with the recently introduced concept of guided image filtering for edge preserving de-noising. Third, we have implemented the pipeline on the graphics processing unit (GPU), enabling high-quality preprocessing in real-time. In experiments, the framework achieved a depth accuracy of 0.8 mm (1.4 mm) on synthetic (real) data, at a total runtime of 40 ms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)

Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...

متن کامل

Applications of gold nanoparticles for medical imaging

Background & Aim: Molecular imaging enables us to non-invasively visualize tissue microstructures and lesion characterization, allowing accurate diagnosis of diseases at early stages. A successful molecular imaging requires a nontoxic contrast agent with high sensitivity. Nowadays, a wide range of nanoparticles have been developed as contrast agents for medical imaging modalities. Here, we revi...

متن کامل

A Bayesian approach for image denoising in MRI

Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...

متن کامل

آشکارسازی سیگنال بر اساس پردازش موازی مبتنی بر جی‌پی‌یو در شبکه‌های حس‌گری صوتی دارای زیرساخت

Nowadays, several infrastructure-based low-frequency acoustical sensor networks are employed in different applications to monitor the activity of diverse natural and man-made phenomena, such as avalanches, earthquakes, volcanic eruptions, severe storms, super-sonic aircraft flights, etc. Two signal detection methods are usually implemented in these networks for the purpose of event occurrence i...

متن کامل

Improvement and parallelization of Snort network intrusion detection mechanism using graphics processing unit

Nowadays, Network Intrusion Detection Systems (NIDS) are widely used to provide full security on computer networks. IDS are categorized into two primary types, including signature-based systems and anomaly-based systems. The former is more commonly used than the latter due to its lower error rate. The core of a signature-based IDS is the pattern matching. This process is inherently a computatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011